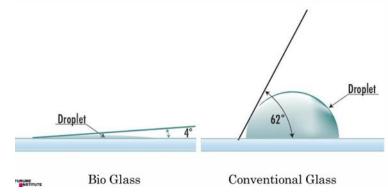

船舶の燃料削減提案 シリカ特殊フィルターとナノバブルの提案

株式会社TOKYO E&G

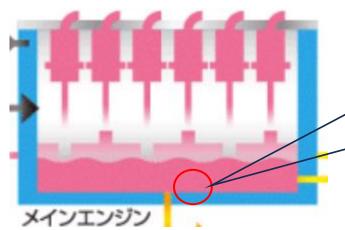
160-0004 東京都新宿区四谷4-26-6テクノ四谷

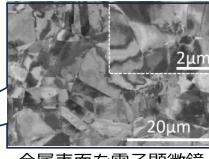
シリカ特殊フィルターの提案


シリカ特殊フィルターは液体の分子構造に変化を与えるものです。 フィルター内部には「特殊機能性ガラス」(バイオグラス)が充填されており、液体を内部に 通過させることにより、シリカ特殊バイオグラスと液体が接触し、液体を改質します。

シリカ特殊グラスとは?

- ■□成分
- ・黒色:磁鉄鉱(マグタイト) 緑色:麦飯石(ヘルストーン)
- □特徴:久留米工業大学渡邊孝司名誉教授(工学博士)・福岡県立飯塚研究開発センター・その他多数実


証


- ・表面親水特性(表面張力の極低減)
- ・減菌、抗菌特性
- ・脱臭、消臭特性
- 酸化還元特性
- · 遠赤外線放射特性
- ■□応用
- ①自動車の燃費向上及び有害排気ガス削減
- ②船舶の燃費向上及び有害排気ガス削減
- ③ボイラーの燃費向上及び有害排気ガス削減
- ④配管(水、温泉)のスケール除去
- ⑤水槽の水質浄化と魚の成長促進
- ⑥農作物の成長促進と品質向上

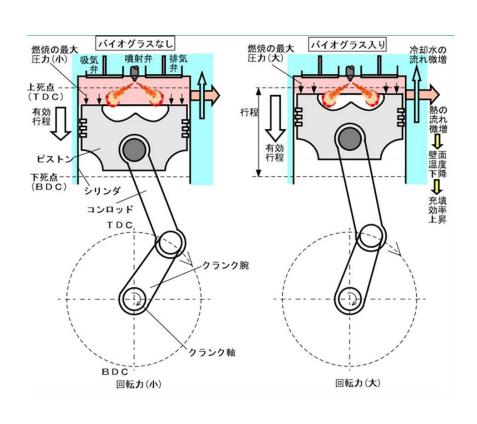
表面張力が低下したクーラント液をエンジンの冷却水に使用すると?

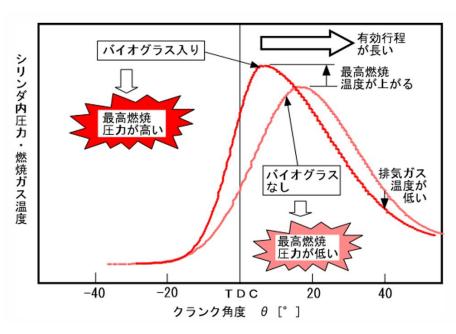
金属表面を電子顕微鏡で見た写真

全てのエンジンのピストン燃焼部 とクーラント液の境にあるのは金 属壁です。

金属の表面は見た目では滑らかで すが実際はざらざらで凹凸が沢山 あります。

通常のクーラント液は表面張力が働き、金属表面の凹部まで水が入り込めない。


クーラント液を バイオフィルターに通すと



改質クーラント液は表面張力が低下し、金属表面の凹部まで水が入り込む。

シリカ特殊フィルターの効果の検証

燃焼室と同壁面温度低下の効果による充填 効率の上昇および膨張比増大にともなう正 味熱効率の上昇による燃費率向上。

機能性ガラスは冷却水の表面張力、粘度や動 粘度、 および管摩擦係数の減少により熱伝 達率が上昇して, 機関の充填効率を上昇さ せて燃費, 機関性能と排気 ガス特性を大き く改善できる。

シリカ特殊グラスの 油に対する影響

A重油500mlに、シリカ特殊グラス 30個(黒15個・緑15個)を30分接 触させたところ、右の様な結果を得 た。

pHが上昇した。 引火点が6℃低下した。 動粘度がわずかに変化した。 流動点2.5℃上昇した。 これらの結果から、シリカ特殊グラ スに接触したA重油は、燃焼しやすい 状態に変化したことが考察できる。

分析・試験結果報告書

No. TK-071019

報告年月日 2007年06月29日

お引受年月日 2007年6月25日

お引受番号

ご依頼のありました分析・試験結果を、下記の通りご報告申し上げます。

â

1. 試験名

燃料油の分析

2. 試料名

A重油サンプル

バイオグラスで処理前後の性状を測定する。

処理条件: 試料500mLに、バイオグラス30個(黒15個+白15個)を30分接触させた。

3. 試験結果

試験項目	処理前	処理後	単位	試験方法
密度	0.873	0.873	g/cm ³	JIS K 2249
反応(pH)	中性(6.3)	中性(7.3)	-	JIS K 2252
引火点(PMCC)	76.0	70.0	$^{\circ}$	JIS K 2265
動粘度(50℃)	2.530	2.535	mm ² /s	JIS K 2283
流動点	-22.5	-20.0	$^{\circ}$ C	JIS K 2269
硫黄分	0.45	0.45	mass%	波長分散 蛍光X線法
灰分	0.001	0.003	mass%	JIS K 2272
水分(気化KF法)	0.01未満	0.01未満	mass%	JIS K 2275
残留炭素分	0.03	0.03	mass%	JIS K 2270
総発熱量(推算)	45.05	45.05	MJ/Kg	JIS K 2279
塩素分	0.01未満	0.01未満	mass%	波長分散 蛍光X線法
窒素分	0.02	0.02	mass%	JIS K 2609 (化学発光法)

以上

燃料油配管 実績

■口実証実験

・国土交通省海事局

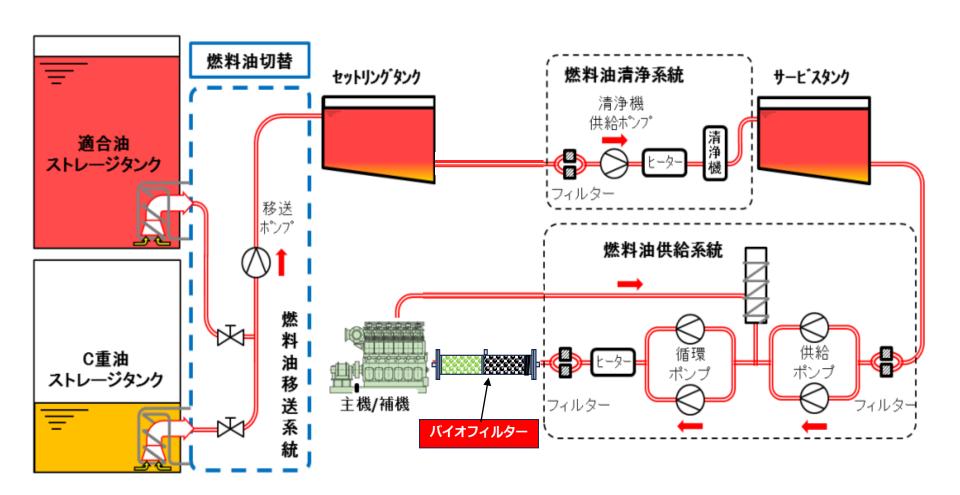
船名:宮崎エキスプレス(12,000トン)

実施期間:平成20年度

燃料の種類:C重油

燃料削減効果:5.9%

年間燃料削減額:52,776,977円


年間CO2削減量:3,215kg

燃料油配管への設置例

冷却水配管実績

■□実証実験

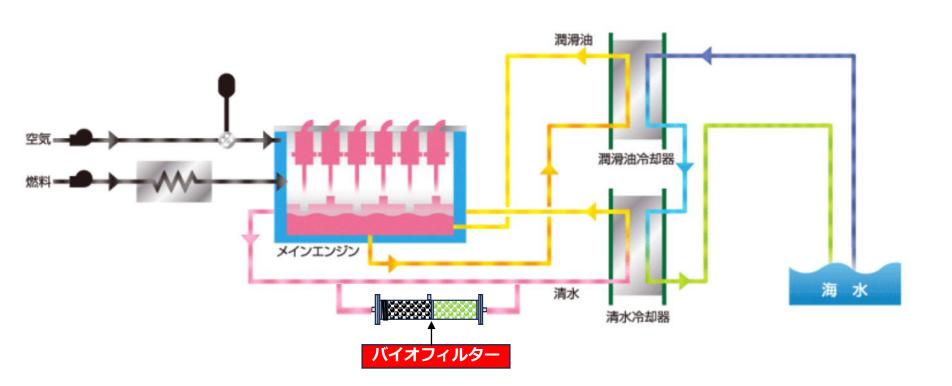
· 社団法人 新漁船漁業技術研究協会(山口県下関市)

船名:沖合底引き網漁船 第一・第二やまぐち丸(60トン)

実施期間:平成20年8月15日~平成21年5月15日

燃料の種類:A重油

燃料削減効果:5.1~10%


証明:「燃費の削減に有効なシーアップの推薦について」受領

冷却水配管への設置例

シリカ特殊フィルターの効果の検証

【効果検証例】

毎日ほぼ同様なルートを運行する船舶において、シリカフィルター未使用時 (普段の運行時)の燃費と使用時の燃費を比較する。

```
シリカ特殊フィルター未使用時 = 10 \text{km}/\ell
シリカ特殊フィルター使用時 = 11 \text{km}/\ell
比較燃費差 = 1 \text{km}/\ell
```

比較検証結果 = 10%の燃料削減効果有となります。

```
冷却水系統で5%以上!!
燃料油系統で5%以上!!
を目指します。(実証実績より)
```

推薦状

進船漁業者各位

燃油の削減に有効なシーアップの推薦について

弊協会は常々、漁船漁業に深い関心を持ち、何かお役に立つものが あればと、種々の分野で研究開発をして参りました。その一環としての 燃油削減策がシーアップの使用です。

シーアップ=バイオグラス (機能性ガラス) は、化学的特性により 冷却水の表面張力を低減させ、伝熱効果を高めることによって機関の 充填効率、燃焼効率を上昇させて、燃費の削減、機関性能と排気ガス 特性を改善できることが判明したので、これを船舶に使用できるよう 開発されたものがシーアップです。これを機関の冷却水 (清水) 系統 に1回投入すれば、半永久的に効力を発揮でき、また、冷却水管内の 錆の発生を抑え、防錆剤が不要になりますので、非常に経済的です。

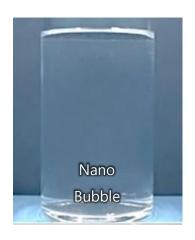
弊協会では、シーアップの効果を実証するため、以東機船底曳網 漁船(60トン型)で2年間実証試験を行いましたが、その結果、 燃費を5.1%削減することができました。この試験中には過負荷 運転もかなりみられましたので、適正回転数の範囲内で運転すれば 5.1%以上10%位は期待できます。

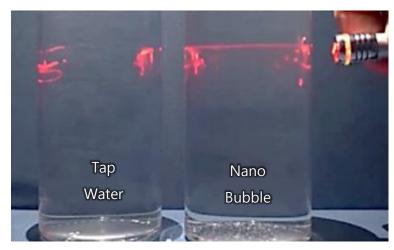
以上の実証試験結果より、燃費の削減に有効なシーアップの使用をお奨めいたします。

平成23年7月

社団法人 新漁船漁業技術研究協会 (元水産大学校教授)

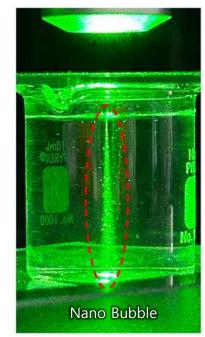
会長 今西 一

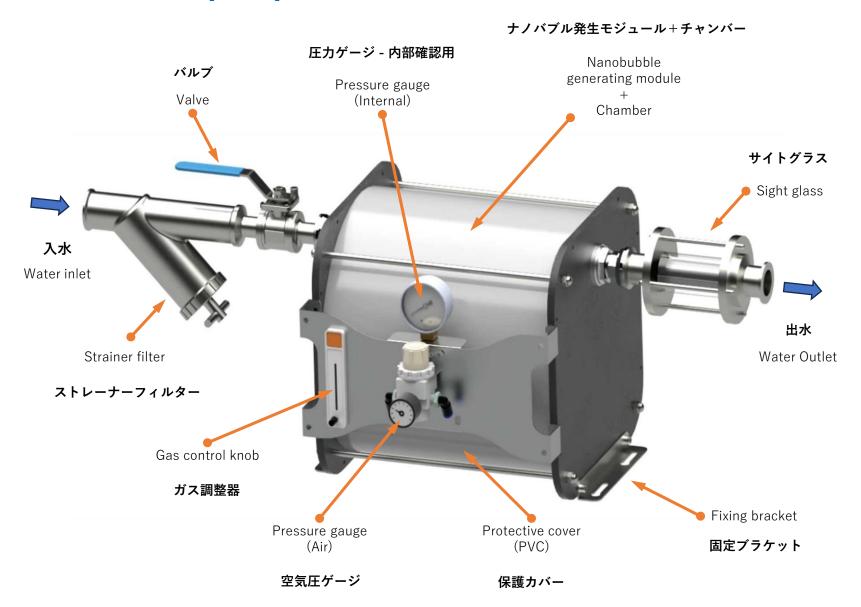

船舶燃料を完全燃焼させて燃料費のコストダウン CO₂/NOx/SOxも同時に削減出来る ナノバブル装置

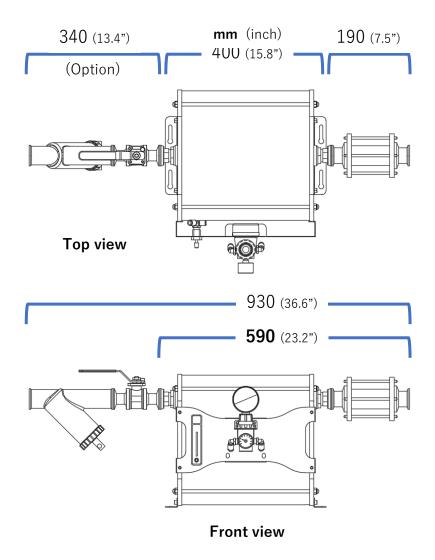

ナノバブルを燃料に入れて燃焼させると、 環境・省エネ面では、下記のような効果が得られる。

- (1)燃料の消費量を約8~12%削減できる。
- (2) CO2排出を削減できる。
- (3) 燃焼効率の大幅改善。
- (4) 黒煙(煤煙)が出にくくなる。
- (5) 石油系燃料の有害物質が少なくなる。
- (6) 完全燃焼することで、熱効率が向上する。

バブルの種類

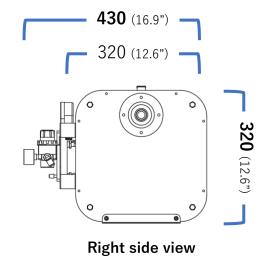



レーザー (532nm、488nm) 照射後、散乱 現象を通じて肉眼で確認可能



[KICT]

JFN-XM1 (1/3) 主要名称



JFN-XM1 (2/3)外形寸法

* 空圧部品および各種ゲージは、供給状況により仕様が変更される場合があります.

吐出量	20~25 ton/day		
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	350Wポンプ接続時		
投入気体	$ m O_2/~CO_2~/~N_{2,}$ etc.		
オプション	Strainer filter		
サイズ(mm)	W590, D430, H320 (バルブ、ストレーナーフィル ターを除く)		
重量(kg)	13kg / (ALL: 19kg)		
その他の事項	Nano tube: Ø25		
接続規格	Inlet/Outlet: 25A (Sanitary - 1.5S)		

おわりに

本資料は、シリカ特殊フィルターとナノバブルの説明と提案のためのものです。

効果の検証方法、設置場所や位置、シリカ特殊フィルター本体とナノバブル装置の価格等については現地を確認した後、別途協議合意の上、決定することと致します。

また、設置に要する手続き等に関しても別途協議とさせていただきます。

株式会社TOKYO E&G